

Association Between DBI/ARS Scores and Adverse **Outcomes in Hospitalized Elderly**

Lisa Nguyen, PharmD^{1,2}, David Elliott, PharmD¹, Scott Dean, PhD², Mary Emmett, PhD² and Rachel Sankoff, PharmD Candidate¹ 1. West Virginia University-Charleston, WV 2. Charleston Area Medical Center- Charleston, WV

BACKGROUND

Optimization of drug therapy in the elderly remains a challenge in clinical practice. Drug Burden Index (DBI) and Anticholinergic Risk Scale (ARS) are evidence-based tools used to quantify the severity of exposure that an elderly patient may be at risk of adverse drug reactions caused by drugs with anticholinergic and/or sedative properties.^{1,2} Findings from previous studies demonstrated that increased anticholinergic and sedative drug exposure is associated with poorer cognitive and physical function in community-dwelling residents.^{1,2} Limited evidence is currently available to determine the significance of using both DBI/ARS scores in hospitalized elderly patients to correlate their relationship with specific inpatient clinical outcomes.

OBJECTIVES

1.To evaluate the utility of DBI/ARS scores in measuring drug therapy quality 2.To assess whether higher total DBI/ARS scores were associated with higher incidence of adverse outcomes in hospitalized elderly patients

METHODS

Design: IRB-approved, retrospective, chart review of electronic medical records

Setting: CAMC-GD, Charleston, WV

Outcome Measures:

- Primary endpoint was relationship between total DBI/ARS scores and occurrence of falls, delirium, use of patient safety advocate restraint and (sitter).
- Secondary endpoint was relationship between DBI/ARS scores and length of hospital stay and all-cause mortality.

STUDY PATIENTS

- Inclusion criteria:
- Patients ≥ 65 years old
- Initially admitted to either a hospitalist (H) or an internal medicine (IM) service
- Between Jan. 1 through Dec. 31, 2010
- Length of hospital stay \geq 4 days

Exclusion criteria:

Initial admission to intensive care unit. surgery, or trauma services

Patient population:

- Initial number of identifiable patients: 515
- H: 178 vs. IM: 337
- Duplicate patients: 7 (H) vs. 12 (IM)
- Remaining patients: 171 (H) vs. 325 (IM)

 Data collection for IM stopped when reached 171 patients as sample size was determined to be adequate and also to equal 171 (H) patients

STATISTICAL ANALYSIS

- SAS Program, version 9.2
- Basic descriptive state
- Chi-squared test or
- Outcomes were Whitney U and Kruska
- Statistical significance was determined using an alpha level of ≤ 0.05

CALCULATIONS

Drug Burden Index: 1

- Anticholinergic and/or sedative effects DBI = Total daily dose/ (minimal effective
- dose for geriatrics + total daily dose)
- Example: zolpidem 10 mg at bedtim
- DBI = 10 / (5 + 10) = 0.67

Anticholineraic Risk Scale:2

- Categorically ranked list of drugs with mainly anticholinergic effects
- Scale of 0 to 3 (0 = low risk, 3 = high risk)
- ARS = sum of all ARS scores for each drug
- Example: levothyroxine (0), hydroxyzine (3) • ARS = 0 + 3 = 3

RESULTS

Patient Population:

- Baseline demographics (H vs. IM)
 - Age, sex, place of residence (p > 0.05)
 - Cognitive impairment (IM > H, p < 0.0001)

Outcomes by Groups:

- No statistically significant differences between H vs. IM patients
- Delirium occurred most frequently, followed by use of restraint
- Fall occurred least frequently of all outcomes

Table 1. Outcomes and DBI/ARS scores

Outcomes	Median	± SD	p-value	
	Scores			
Delirium	(DBI)		<0.0001	
-Yes	1.63	1.01		
-No	0.67	0.89		
Restraint			0.0013	
-Yes	1.33	1.11		
-No	0.8	0.92		
Delirium	(ARS)		<0.0001	
-Yes	1	1.96		
-No	0	1.15		
Restraint			0.0013	
-Yes	1	2.18		
-No	0	1.25		

Table 2. Length of Stay and DBI scores

= 0.0014

DBI	LOS (days)	LOS (days)	±
Score	Mean	Median	SD
0	7.4	6	4.1
0 – 1	8.0	6	5.3
> 1	9.6	8	6.6

Table 2. Length of Stay and ARS scores

P = 0.0115

ARS	LOS (days)	LOS (days)	±
Score	Mean	Median	SD
0	8.2	7	5.6
0 – 2	9.0	8	6.3
≥ 3	9.8	9	5.4

CONCLUSIONS

- Increased DBI/ARS scores associated with -Delirium
 - -Restraint use

-Longer length of hospital stay

- No significant association in the incidence of falls, use of sitter, or all-cause mortality
- DBI and ARS scores are useful in risk stratification of adverse drug outcomes

REFERENCES

1. Hilmer et al. Drug burden index score and functional decline in older people. Am J Med. 2009;122(12):1142-1149.

2. Rudolph et al. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch Intern Med. 2008; 168(5):508-13.

FINANCIAL DISCLOSURE

None

ACKNOWLEDGEMENT

- Rebecca Richmond, PharmD, CGP
- Stephanie Thompson, PhD

CORRESPONDENCE

David Elliott, PharmD, CGP, FCCP E-mail: delliott@hsc.wvu.edu

•		P =
e	DBI	LOS (days)
	Score	Mean
	0	74

atistics			-No
Fisher's exac	ct test		Delirium
compared u	using	Mann-	-Yes
al-Wallis test			-No