Rapid attainment of pharmacodynamic parameter goals in patients receiving vancomycin or aminoglycosides for serious infections Larry Bauer, PharmD, Dept. of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA

Objectives: Compare the AUC₂₄/MIC ratio for initial vancomycin doses and the Cmax/MIC ratio for initial gentamicin/tobramycin doses selected by treating clinicians using estimated population parameters and actual computed parameters to those attained after individualized adjusted doses were prescribed. Methods: 298 patients (152 vancomycin/146 aminoglycoside) were included using the following criterion: treating clinicians self-identified vancomycin treatment goal of $AUC_{24}/MIC>400$ or aminoglycoside treatment goal of Cmax/MIC≥10, culture-documented MRSA or gram-negative infection, MIC measured using the Etest method, vancomycin or aminoglycoside plus serum creatinine concentrations during therapy. Estimated population AUC₂₄ for vancomycin was determined using the following equation: $AUC_{24} = D/\{[(CrCl_{est} \bullet 0.79) + 15.4] \bullet 0.06\},\$ where D is vancomycin dose in mg for a 24 hour period and CrCl_{est} is estimated creatinine clearance in mL/min [Cockcroft-Gault for nonobese patients (within 30%) IBW)

(Methods, cont): and Salazar-Corcoran for obese patients (> 30% over IBW)]. Estimated population Cmax for gentamicin/tobramycin was determined using the following equation: $Cmax = [(D/t')(1-e^{-kt'})]/[kV(1-e^{-kt})], where D is$ aminoglycoside dose, t' is the infusion time, t is the dosage interval, k is the elimination rate constant (k = $0.00293(CrCl_{est})+0.014$ and CrCl_{est} is estimated creatinine clearance in mL/min), V is the volume of distribution (0.26 L/kg for nonobese, or ABW for obese [ABW=IBW+[0.4(TBW-IBW)], TBW=total body weight). Estimated population MIC for each bacteria was the average institutional value for the organism during the past 6 months. Actual and adjusted AUC₂₄ vancomycin or Cmax aminoglycoside values were computed using a Bayesian computer program (using a measured trough vancomycin concentration 2-5 doses after initial dosing or a dosing adjustment began, or a measured aminoglycoside concentration 2-6h post-dose, 2-3 doses after initial dosing or a dosing adjustment began). Initial antibiotic doses were determined by the treating clinicians, and adjusted antibiotic doses were prescribed to attain treatment goals.

Results: While treating clinicians expected doses initially prescribed to patients to the treatment goal, only 51% of the vancomycin dosage regimens were exp achieve goal using population estimate AUC₂₄ and MIC, and only 76% of the aminoglycoside dosage regimens were expected to achieve goal using populat estimates for Cmax and MIC. For initial of vancomycin, only 35% of patients ac achieved the goal of $AUC_{24}/MIC>400$. dosing of aminoglycosides, only 64% of patients actually achieved the goal of Cmax/MIC≥10. Subsequently, the adjusted dosage achieved the treatment goal in all cases (100%; p<0.01).

> Clinician expected, initial dos Est. Pop. PK/PD, initial dose Actual PK/PD, initial dose Actual PK/PD, adjusted dose

cted all	Conclusions: Antibiotic doses can be rapidly
o attain	individualized using Bayesian techniques to
	attain widely-used
pected to	pharmacokinetic/pharmacodynamic goals.
es for	Clinician-prescribed initial doses or doses
	computed using population estimates will
9	not achieve this goal for all patients, but at
tion	the outset a higher percentage of
l dosing	aminoglycoside patients will reach goal
ctually	pharmacodynamic values compared to
For initial	vancomycin patients (p<0.05).
of	

	Vanco AUC24 /MIC	Vamco AUC24 /MIC	AGS Cmax /MIC	AGS Cmax /MIC
	≤ 400	> 400	< 10	≥ 10
ose	0 %	100%	0 %	100%
	49%	51%	24%	76%
	65%	35%	36%	64%
е	0%	100%	0%	100%