

# Comparison of extended infusion versus standard infusion magnesium repletion in adult trauma intensive care unit patients

## Background

- Hypomagnesemia in the critically ill is linked with hypokalemia and increased mortality<sup>1</sup>
- Rapid infusion of magnesium sulfate leads to high rates of urine excretion<sup>2</sup>
- A clinical review recommends infusing magnesium doses over 8 to 24 hours<sup>3</sup>
- Common practice is to infuse each gram of magnesium over 30 minutes to 1 hour<sup>4</sup>
- No clinical trial to date has compared different infusion times on magnesium repletion efficacy

## Objective

To determine if there is a difference in effectiveness of magnesium repletion with two rates of infusion:

- Standard infusion: magnesium sulfate 2 grams over 2 hours
- Extended infusion: magnesium sulfate 2 grams over 6 hours

## Methods

#### Study Design

- Retrospective chart review of magnesium sulfate infusions orders from Jan 2013 to Oct 2015
- Mann-Whitney U test for primary outcome

| Inclusion               | Exclusion                |  |
|-------------------------|--------------------------|--|
| Age ≥ 18                | eGFR < 30 mL/min         |  |
| Admission to trauma ICU | HD, PD, CRRT             |  |
| Received IV magnesium*  | Enteral Repletion or TPN |  |
| Serum Mg < 2 mg/dL      | Preeclampsia/Vasospasm   |  |
|                         |                          |  |

Katie Nault, PharmD, MBA<sup>1</sup>; April Miller Quidley, PharmD, BCPS, FCCM<sup>1</sup>; Michael Bard, MD, FACS<sup>1,2</sup>; Christopher Dennis, PharmD, BCPS<sup>1</sup>; Deanna Bice, PharmD, BCPS<sup>1</sup> <sup>1</sup>Vidant Medical Center, Greenville NC; <sup>2</sup>East Carolina University Brody School of Medicine, Greenville, NC

## Methods, continued

## Matching

 Extended infusion doses were matched to standard infusion doses based on:

Renal function using eGFR (mL/min):

- 30 59
- 60 89
- ≥ 90

Baseline serum magnesium level (mg/dL):

- < 1.5
- 1.5 1.9

#### Primary Outcome

 Median change in serum magnesium level per gram of magnesium administered

#### **Secondary Outcomes**

- Change in serum potassium
- In-hospital mortality, ICU and hospital length of stay, disposition upon discharge

## Results

| Doses reviewed<br>N = 6673  |     |                          |     |
|-----------------------------|-----|--------------------------|-----|
|                             |     | <b>Exclusion Reasons</b> | Ν   |
|                             |     | TPN                      | 216 |
|                             |     | Vasospasm in SAH         | 115 |
|                             |     | Enteral magnesium        | 95  |
|                             |     | GFR < 30                 | 93  |
|                             |     | Age < 18                 | 25  |
|                             |     | Magnesium ≥ 2.0          | 6   |
|                             |     |                          |     |
| Extended infusion $N = 148$ | Sta | ndard infusion $N = 148$ |     |

## **Results, continued**

#### **Baseline Demographics**

| Patient<br>Characteristic                                             | Standard<br>(N=148) | Extended<br>(N=148) |
|-----------------------------------------------------------------------|---------------------|---------------------|
| Age, years (mean±SD)                                                  | 50 ± 19             | 47.7 ± 21           |
| Male, n (%)                                                           | 95 (64)             | 92 (60)             |
| BMI, kg/m <sup>2</sup> (mean $\pm$ SD)                                | 29.9 ± 9.1          | 27.7 ± 7.2          |
| <ul><li>Admission Diagnosis</li><li>Trauma</li><li>Surgical</li></ul> | 87 (59)<br>17 (11)  | 88 (59)<br>21 (14)  |
| <ul><li>Diabetes, n (%)</li><li>Type 1</li><li>Type 2</li></ul>       | 1 (0.7)<br>29 (20)  | 1 (0.7)<br>19 (13)  |
| Sepsis, n (%)                                                         | 4 (3)               | 8 (5)               |
| Small Bowel<br>Resection, n (%)                                       | 11 (7)              | 15 (10)             |
| Alcohol Abuse, n (%)                                                  | 34 (23)             | 44 (29)             |
| Creatinine, (mean±SD)                                                 | $0.8 \pm 0.4$       | $0.77 \pm 0.43$     |
| Fluid balance, mL, (mean $\pm$ SD)                                    | 485 ±1993           | 594 ± 1548          |
| Loop diuretic, n (%)                                                  | 7 (4)               | 7 (4)               |
| Diarrhea, n (%)                                                       | 18 (12)             | 23 (16)             |

## Matching

|         | Baseline Magnesium |           |  |
|---------|--------------------|-----------|--|
| GFR     | < 1.5              | 1.5 – 1.9 |  |
| ≥ 90    | 5                  | 99        |  |
| 60 - 89 | 3                  | 11        |  |
| 30 - 59 | 4                  | 13        |  |



## Conclusion

- Extended infusion magnesium sulfate resulted in a significant increase in serum magnesium levels.
- These results encourage standardization of the electrolyte repletion protocol in the trauma ICU.

## References

- 1) Rubeiz GJ et al. Crit Care Med 1993;21(2):203-9.
- 2) Oster JR, Epstein M. Am J Nephrol 1988;8:349-54.
- 3) Kraft MD et al. Am J Health-Syst Pharm 2005;62:1663-82.
- 4) Bartel B, Gau E. Critical Care Pharmacotherapeutics, Ch 7. 2013.

## Disclosure

The authors of the presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation.