

EVALUATION OF EARLY VERSUS LATE NEUROMUSCULAR BLOCKADE IN ACUTE RESPIRATORY FAILURE

Giles W. Slocum, Pharm.D., Christine M. Groth, Pharm.D., BCPS, Elaine W. Fosmire-Rundgren, Pharm.D., Jignesh H. Patel, Pharm.D., BCPS, and Anthony P. Pietropaoli, MD, MPH

University of Rochester Medical Center, Rochester, NY

Background

Acute respiratory distress syndrome (ARDS) is characterized by hypoxemic respiratory failure

The Berlin Definition of ARDS

Timing	Within 1 week of known insult or worsening symptoms		
Chest imaging	Bilateral opacities		
Origin of edema	Not explained by cardiac failure or fluid overload		
Oxygenation Mild	PaO_2/FIO_2 300 to 201 mm Hg with PEEP or CPAP \geq 5 cm H ₂ O		
Moderate	PaO_2/FIO_2 200 to 101 mm Hg with PEEP \geq 5 cm H ₂ O		
Severe	$PaO_2/FIO_2 \le 100 \text{ mm Hg with PEEP} \ge 5 \text{ cm H}_2O$		

- ARDS has mortality rate 40-60%
- Often requires mechanical ventilation
- Patient-ventilator dyssynchrony can create suboptimal oxygen exchange
- Role of neuromuscular blocking agent (NMBA)
 - Facilitate lung-protective mechanical ventilation
 - Potential decrease in lung or systemic inflammation directly by NMBA

Purpose

- To determine if there is a difference in 28-day ventilator-free days in patients with acute respiratory failure (ARF) receiving early vs. late administration of NMBAs
 - Early administration: ≤ 48 hours
 - Late administration: > 48 hours
 - ARF definition: SpO₂/FIO₂ ratio <315
- To determine if ARF patients receiving early NMBAs have
 - Lower ICU and hospital length of stay
 - Lower rate of 28-day mortality
 - Lower incidence of barotrauma, pneumonia, and ICU aquired paresis
 - Greater days without organ failure
- Compare median dose and duration of NMBAs
- Compare prescribed versus delivered tidal volume

Methods

Study Design

Single health system, retrospective cohort study

<u>Setting</u>

- UR Medicine
 - Strong Memorial Hospital (850-bed Hospital in Rochester, NY)
 - Highland Hospital (260-bed Hospital in Rochester, NY)

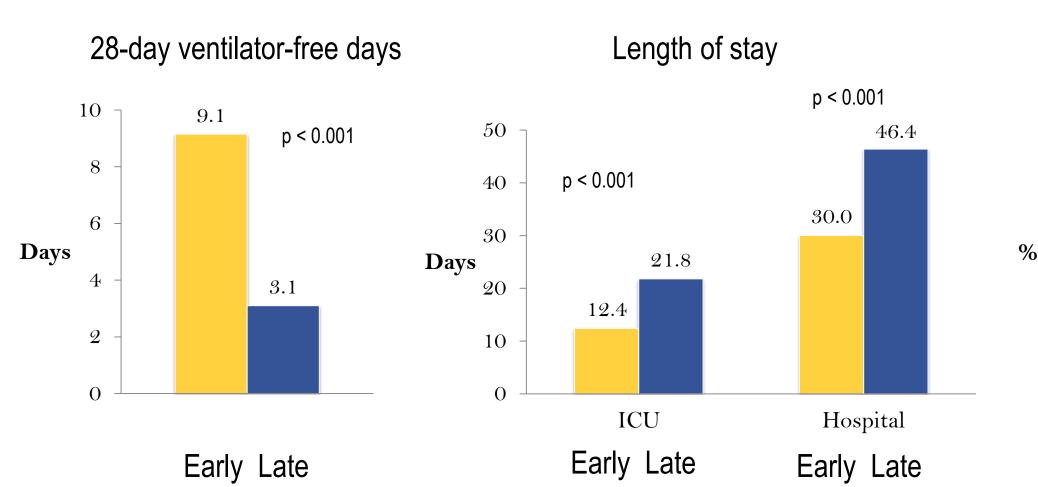
Methods (cont.)

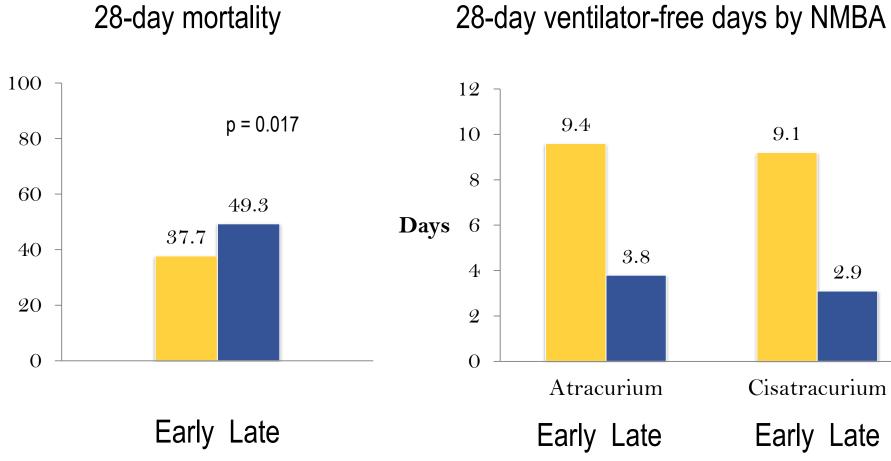
Selection of Participants

- March 2011to July 2015
- Inclusion
 - •Adult patients (≥ 18 yo), admitted to adult ICU, requiring endotracheal mechanical ventilation for acute hypoxemic respiratory failure, on a continuous infusion NMBA for management of ARF
- Exclusion
 - Duration of mechanical ventilation < 48 hours, continuous infusion NMBA for an indication other than respiratory failure, and use of a NMBA for a duration < 24 hours

Study Procedures

- •Utilized pre-existing data in the electronic medical record (EMR)
- •Captured all patients with medication administration report (MAR) with a documentation of a continuous infusion of a NMBA
- •Charts were reviewed to establish time of ARF diagnosis
- •Eligible patients were then arranged into the two groups for comparison
- Data collection was then performed
- •The study was approved by the institutional IRB


Statistical Analysis


- •Assuming 80% power and Type I error of 0.05, a sample size of 322 patients per group is required to detect a 2 day increase in ventilator-free days in the early NMBA group
- •Descriptive statistics were used for the demographics
- •Chi-square and Mann-Whitney Rank Sum analysis, as appropriate

Results

Baseline Characteristics	Early	Late	p value
Age, mean ± SD years	54.3 ± 15.7	55.4 ± 15.3	0.58
Sex, no. males (%)	229 (64)	90 (61.6)	0.70
Weight, mean ± SD kg	89.9 ± 27.1	90.5 ± 35	0.44
IBW, mean ± SD kg	65.8 ± 11	64.1 ± 11.7	0.51
NMBA used			
Atracurium, no. (%)	240 (67)	112 (76.7)	0.041
Cisatracurium, no. (%)	112 (31.3)	34 (23.3)	0.092
Rocuronium, no (%)	2 (0.6)	0 (0)	0.9
Vecuronium, no (%)	3 (0.8)	0 (0)	0.64

Results (cont.)

Future analysis

- Ventilator settings and mechanics
- Dose and duration of NMBA
- Corticosteroids, epoprostenol, and nictric oxide use
- APACHE II scores
- SOFA scores
- Incidence of pneumonia, ICU paresis, and barotrauma
- Discharge disposition

Limitations

Cisatracurium

Early Late

- Retrospective study design
- ARF defined with SpO2/FIO2
- Severity of illness scores
- APACHE II
- SOFA
- Unknown quality of neuromuscular blockade
- Did not meet statistical power for Late group

Conclusions

- Early onset of NMBA in ARDS is suggestive of higher 28-day ventilator-free days, shorter ICU and hospital stays, and reduced mortality
- Future studies should investigate early administration of continuous NMBA in ARF with a prospective, randomized controlled trial to assess the longterm outcomes to validate these results

References

- Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-2533.
- Shafeeq H, Lat, I. Pharmacotherapy for acute respiratory distress syndrome. Pharmacotherapy. 2012;32(10):943-57
- Papazian L, et al (ACURASYS investigators). Neuromuscular blockers in early acute respiratory distress syndrome. NEJM. 2010:363(12)1107-16.
- Forel JM, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006:34(1):2749-57.
- Rice TW, et al. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Crit Care Med. 2007:132(2):410-7.