Population Pharmacokinetic Modeling of Free Phenytoin in Adult Patients: Clinical Factors Affecting Protein Binding

Heajin Jun¹, Yan Rong², Catharina Yih³, Jordan Ho³, Wendy Cheng³ and Tony KL Kiang²

¹Department of Pharmaceutics, College of Pharmacy, Seoul National University, Seoul, Republic of Korea; ²Faculty of Pharmacy and Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; ³Department of Pharmacy, Vancouver General Hospital, Vancouver, BC, Canada.

Background

- Phenytoin (PHT) is a widely used anticonvulsant with a narrow therapeutic window (10-20 µg/mL for total, 1-2 µg/mL for free PHT concentrations)^[1].
- Routine therapeutic drug monitoring (TDM) is recommended to ensure efficacy and reduce toxicity.
- Free PHT concentrations are not always measured due to cost or lack of available assay.
- TDM of PHT is commonly conducted by measuring total concentrations. Free concentrations are often estimated with regression equations such as the Winter-Tozer equation^[1].
- PHT is extensively bound to albumin (~90%)[2] and exhibits high inter-individual variabilities in free fraction^[3].
- A full population pharmacokinetic model describing the protein binding properties of free PHT in adults is still lacking.

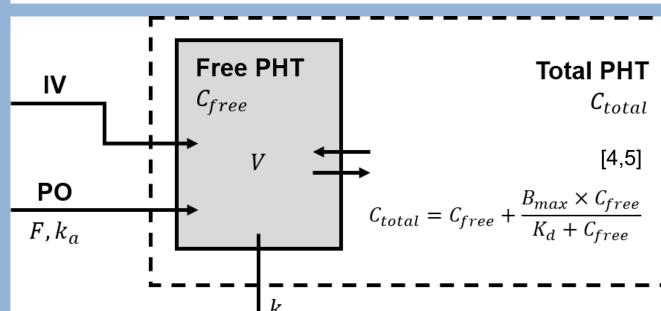
Objective

validate a comprehensive population Sulfonamides (Y/N) pharmacokinetic model describing the pharmacokinetic Valproic acid (Y/N) characteristics and protein binding properties of free PHT in Warfarin (Y/N) adult patients.

Study Design and Methods

- The study was approved by the University of British Columbia (H18-02215) and the University of Alberta Research Ethics Boards (Pro00100357).
- Retrospective study enrolling subjects from year 2014 to 2018 in a tertiary hospital in Vancouver, Canada.
- Paired total and free steady-state PHT concentrations from 3 adult patients receiving oral (n=21) or intravenous (n=16) PHT therapy.
- Non-linear mixed-effects modeling was conducted using IV stochastic approximation expectation-maximization algorithm in MonolixSuite-2019R2.
- Population-pharmacokinetic base model selection: The PO best structural, error, and co-variate models were selected F, k_a based on objective function values, relative standard errors (RSEs), and biological plausibility.
- Population-pharmacokinetic model Established model was internally evaluated using goodness- Bmax, binding constant; Cfree, free PHT concentration; of-fit plots, visual predictive checks, and bootstrapping Ctotal, total PHT concentration; F, bioavailability; k, analysis.

Table 1. Patient demographics (n=37).			
Parameter	Media	n Mean ± SD	
Age (years)	62	61.1 ± 17.9	
Critical care (Y/N) ^{a,b}		16/21	
Sex (female/male) ^a		10/27	
Weight (kg)	70	68.5 ± 15.6	
Albumin (g/dL)	2.7	2.6 ± 0.5	
Serum creatinine (mg/dL)	0.9	1.1 ± 1.0	
Alanine aminotransferase (U/L)	36	71.6 ± 116.2	
Aspartate aminotransferase (U/L)	28	42.8 ± 37.1	
Bilirubin (mg/dL)	0.4	0.9 ± 2.3	
International normalized ratio (INF	R) 1.0	1.1 ± 0.1	
Hemodialysis (Y/N) ^{a,c}		1/34	
Current medications ^{a,c}			
Aspirin (Y/N)		10/26	
Carbamazepine (Y/N)		1/23	
Heparin (Y/N)		1/34	


PHT dosage and	measurements
----------------	--------------

Phenobarbital (Y/N)

1	PHT dose (mg/day)	300	378.5 ± 14
	Administration route (IV/PO) ^a		16/21
	Total PHT concentration (µg/mL)	9.8	11.4 ± 5.3
	Free PHT concentration (µg/mL)	1.1	1.4 ± 0.7
	Free fraction (%)	11.8	12.4 ± 3.1

IV, intravenous; PO, oral; SD, standard deviation. ^aCategorical data are expressed as counts.

^bPatients are considered under "critical care" when admitted to either the general or neurosurgical intensive-care unit. ^cRecords were missing in some patients.

evaluation: Figure 1. Structural model of phenytoin.

elimination rate constant; ka, absorption rate constant; Kd, dissociation constant; V, volume of distribution.

Table 2. Population	parameter	estimates.

SD	Parameters	Estimated	η-	Bootstrap mean (95% CI)	
9		mean value	shrinkage	•	
		(RSE%)	(%)		
	Fixed effects				
6	F	0.859 fixed			
O	ka (hr ⁻¹)	0.225 fixed			
	V (L)	102 (11.5)		102 (60.9-200)	
	k (hr ⁻¹)	0.0267 (9.03)		0.0267 (0.0127-0.0428)	
5.2	Bmax (µg/mL)	154 (26.7)		154 (86.8-381)	
1	β ^{albumin} _Bmax	0.679 (23.6)		0.679 (0.417-1.08)	
	β ^{INR} _Bmax	-0.626 (40.5)		-0.626 (-1.03 to 0.170)	
	Kd (µg/mL)	9.16 (5.28)		9.16 (6.74-21.5)	
	Inter-individual variability				
	ω_V	0.460 (13.0)	0.847	0.460 (0.127-0.512)	
	ω_k	0.164 (54.9)	-4.92	0.164 (0.100-0.574)	
	ω_Bmax	0.0725 (49.8)	12.8	0.0725 (0.0233-0.151)	
	ω_Kd	0.130 (43.2)	-9.23	0.130 (0.0433-0.193)	
	Residual variabil	ity			

ω, inter-individual variability

0.0227 (67.1)

0.0627 (77.2)

0.0227 (0.00720-0.0311)

0.0627 (0.0235-0.114)

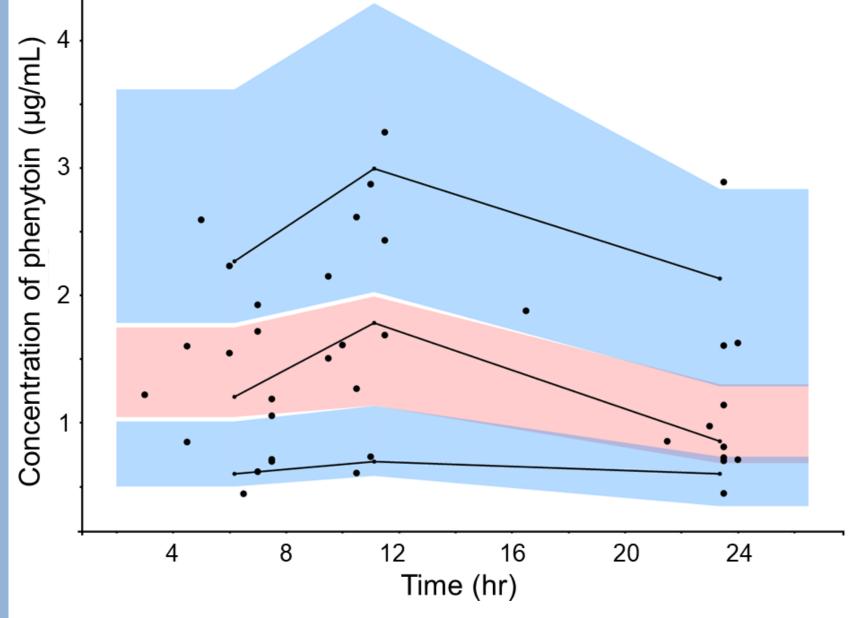
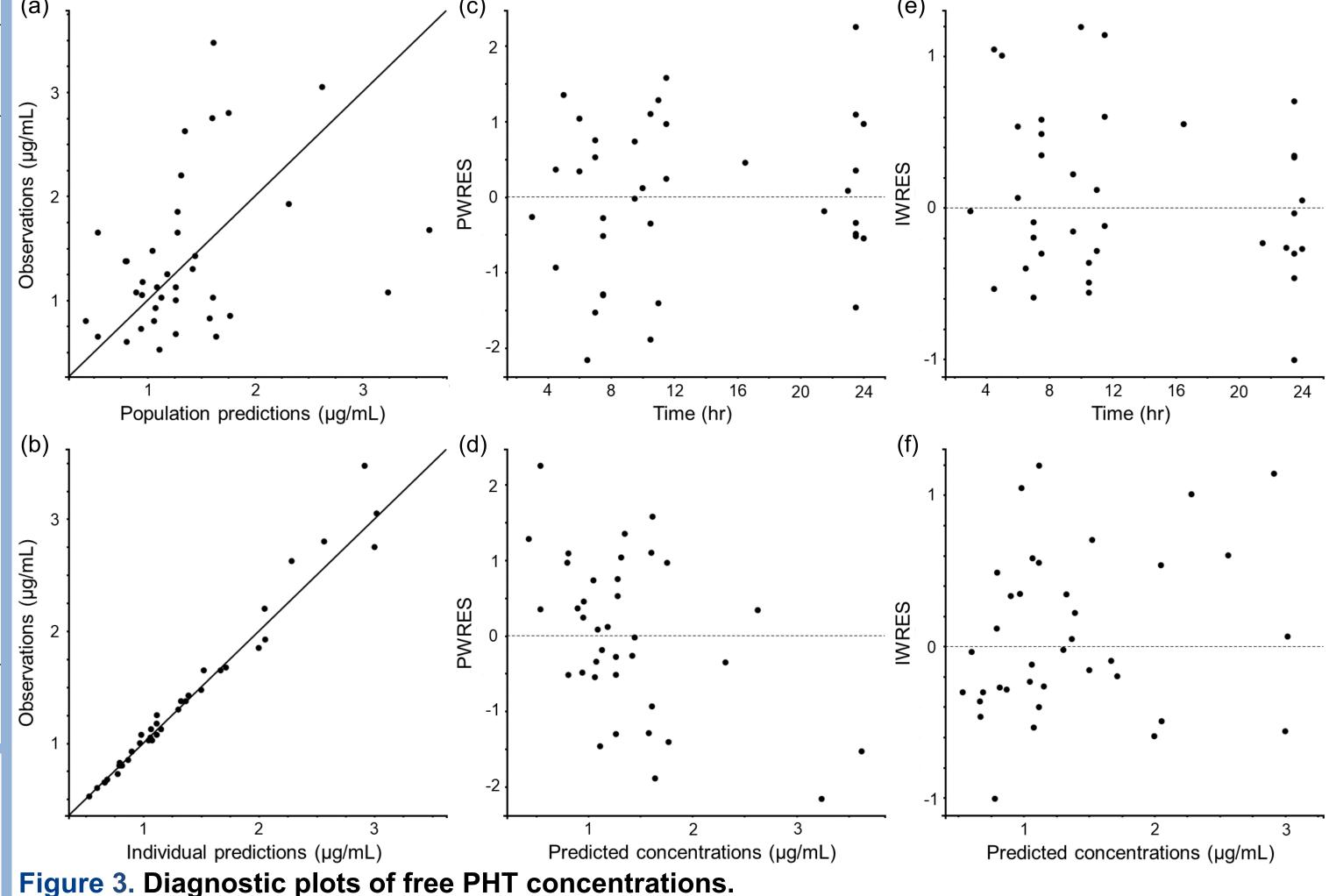



Figure 2. Prediction-corrected visual predictive check of free PHT concentrations.

Individual plasma concentrations of free PHT (·); 5th, median, and 95th empirical percentiles (—); 5th and 95th percentiles (blue) or median (pink) prediction interval areas based on 1000 simulations.

(a) Observed plasma concentration of free PHT (OD) vs. population predicted concentration (PRED); (b) OD vs. individual predicted concentration (IPRED); (c) population-weighted residuals (PWRES) vs. time; (d) PWRES vs. PRED; (e) individual-weighted residuals (IWRES) vs. time; (f) IWRES vs. IPRED

Results & Conclusions

- A one-compartment, intravenous injection/first-order absorption, This research was supported by and first-order elimination model with proportional errors best the International Research & described the population kinetics of PHT (Figure 1).
- The protein binding characteristics of PHT was optimally modelled by a single site, non-linear binding equation characterized with a binding constant and a dissociation constant^[4,5] (Figure 1).
- Further research on additional protein binding models with a variety of elimination processes is ongoing.
- Albumin (positive effect) and INR (negative effect) independently affected Bmax (Table 2).
- This model can be utilized to construct Bayesian forecasting engines for therapeutic drug monitoring of PHT in adult population.

Acknowledgements

Development Program of the National Research Foundation of Korea (Ministry of Science and Grant number: 2019K1A3A1A73079569) and a MITACS Globalink Research Grant (FR41232) awarded to Ms. Heajin Jun and Dr. Tony Kiang.

